ENVIRONMENTAL PRODUCT DECLARATION

NORTON

9500 SERIES DOOR CLOSER

The Norton 9500 series door closer is Tri-Style® packed for regular, top jamb, or parallel arm mounting. It can be used from private to commercial and public sectors, both light and heavy duty.

Norton° ASSA ABLOY

ASSA ABLOY is committed to providing products and services that are environmentally sound throughout the entire production process and the product lifecycle. Our unconditional aim is to make sustainability a central part of our business philosophy and culture, but even more important is the job of integrating sustainability into our business strategy. The employment of EPDs will help architects, designers, and LEED-APs select environmentally preferable door openings. The Norton 9500 Series Door Closer EPD provides detailed requirements with which to evaluate the environmental and human health impacts related to producing our door openings. ASSA ABLOY will continue our efforts to protect the environment and health of our customers/end users and will utilize the EPD as one means to document those efforts.

ENVIRONMENTAL PRODUCT DECLARATION

According to EN 15804 and ISO 14025 Dual Recognition by UL Environment and Institut Bauen und Umwelt e.V.

This declaration is an environmental product declaration (EPD) in accordance with ISO 14025. EPDs rely on Life Cycle Assessment (LCA) to provide information on a number of environmental impacts of products over their life cycle. Exclusions: EPDs do not indicate that any environmental or social performance benchmarks are met, and there may be impacts that they do not encompass. LCAs do not typically address the site-specific environmental impacts of raw material extraction, nor are they meant to assess human health toxicity. EPDs can complement but cannot replace tools and certifications that are designed to address these impacts and/or set performance thresholds – e.g. Type 1 certifications, health assessments and declarations, environmental impact assessments, etc. Accuracy of Results: EPDs regularly rely on estimations of impacts, and the level of accuracy in estimation of effect differs for any particular product line and reported impact. Comparability: EPDs are not comparative assertions and are either not comparable or have limited comparability when they cover different life cycle stages, are based on different product category rules or are missing relevant environmental impacts. EPDs from different programs may not be comparable.

PROGRAM OPERATOR	UL Environment				
DECLARATION HOLDER	ASSA ABLOY / Norton Door Cont	rols			
ULE DECLARATION NUMBER	4786545067.154.1				
IBU DECLRATION NUMBER	EPD-ASA-20150270-IBA1-EN				
DECLARED PRODUCT	Door Closer – Norton 9500 Series				
REFERENCE PCR	Locks and fittings, 07.2014, IBU				
DATE OF ISSUE	September 20, 2015				
PERIOD OF VALIDITY	5 years				
	General information				
CONTENTO OF THE	Product / Product description				
CONTENTS OF THE	LCA calculation rules				
DECLARATION	LCA scenarios and further technic LCA results	ai information			
	References				
The PCR review was conducted by		IBU – Institut Bauen und Umwelt e.V.			
		PCR was approved by the Independent Expert Committee (SRV)			
The CEN Norm EN 15804 serves a was independently verified in account underwriters Laboratories		uBl			
□ INTERNAL	⊠ EXTERNAL	Wade Stout			
This life cycle assessment was ind with EN 15804 and the reference F		IBU – Institut Bauen und Umwelt e.V.			

Environment

1. General Information

Norton Door Controls

Programme holder

IBU - Institut Bauen und Umwelt e.V. Panoramastr. 1 10178 Berlin Germany

Declaration number

EPD-ASA-20150270-IBA1-EN

This Declaration is based on the Product Category Rules:

Locks and fittings, 07,2014

(PCR tested and approved by the independent expert committee (SVR))

Issue date

20.09.2015

Valid to

19.09.2020

Prof. Dr.-Ing. Horst J. Bossenmayer (President of Institut Bauen und Umwelt e.V.)

Dr.-Ing. Burkkart Lebnaty 100

Door Closer - Norton 9500 Series

Owner of the Declaration

Norton Door Controls 3000 Hwy 74 East Monroe, NC 28112 USA

Declared product / Declared unit

The declaration represents 1 Rack-and-Pinion hydraulic door closer (9500 series), consisting of the following items:

- A closer body
- A closer arm
- Accessories

Scope:

This declaration and its LCA study are relevant to Norton Door Controls 9500 series door closers.

The primary manufacturing processes are made by external suppliers and the final manufacturing processes and assembly for all door closer components occur at our manufacturing factory in Monroe, NC USA. The owner of the declaration shall be liable for the underlying information and evidence; the IBU shall not be liable with respect to manufacturer information, life cycle assessment data and evidences.

Verification

The CEN Standard EN 15804 serves as the core PCR Independent verification of the declaration and data according to ISO 14025

internally

externally

2. Product

2.1 Product description

Product name: Norton 9500 series door closers.

Product characteristic: closers are UL Listed and characterized by:

- Cast iron body with a rack-and-pinion design
- Available with adjustable spring sizes 1 through 6 (ADA compliant)
- 9500 Series is Tri-Style® packed for regular, top jamb, or parallel arm mounting.
- Non-handed
- Self-drilling screws included
- Adjustable closing force and two closing ranges
- Adjustable back check, which offers protection for doors and walls by damped opening

 Wide range of accessories (arms, brackets, and drop plates for various installation configurations).

This EPD is applicable to following product: door closer 9500 Series.

2.2 Application

The Norton Door Controls 9500 series door closer can be used – from private to commercial and public sectors both light and heavy:

- Fire & smoke protection and standard doors
- For interior doors
- For interior side of exterior doors in schools, universities, office buildings, and healthcare facilities.
- 9500 Series is Tri-Style® packed for regular, top jamb, or parallel arm mounting.

2.3 Technical Data

The table presents the technical properties of Norton Door Controls 9500 Series

Technical data

recililical data							
Name	Value						
Adjustable closing force	ANSI/BHMA A156.4 Size 1 - 6						
Door width up to	48 in (1220 mm)						
Door weight up to	250 lbs (114 kg)						
Fire and smoke protections	Yes						
Door swing directions	Non-handed (left or right hand mounted)						
Closing speed	Variable between 180° - 10°						
Latching speed	Variable between 10° - 0°						
Back check	Variable above 70°						
Opening angle	Up to 180° depending on arm application						
Closer weight	13.91 lbs (6.31 kg)						
Closer height	4.44 in (109mm)						
Closer depth	2.25 in (55mm)						
Closer length	12 in (294mm)						
Certified to / in compliance	ANSI/BHMA A156.4 Grade 1 UL Listed						
with	UL10C for positive pressure fire doors ADA compliant						

2.4 Placing on the market / Application rules

The standards that can be applied for door closer devices and relevant accessories are:

ANSI/BHMA A156.4 Grade 1 for Door Controls - Closers

UL Listed product

ADA Compliant

Exceeds 25 million cycles

Controlled door closing devices.

9500 series door closers and relevant accessories are certified according to these standards.

2.5 Delivery status

Door closer units and arms are delivered ready for installation in separate a single packages. The door closer unit including the packaging has the following dimensions: 95mm x 165mm x 400mm.

2.6 Base materials / Ancillary materials

The primary product components and/or materials must be indicated as a percentage mass to enable the user of the EPD to understand the composition of the product in delivery status.

The average composition for Norton Door Controls 9500 Series, including the arm is as following:

Component	Percentage in mass (%)
Brass	0.10
Steel	92.60
Zinc	0.42
Plastics	3.82
Other	3.06
Total	100.0

2.7 Manufacture

The primary manufacturing processes are made by Tier 1 suppliers in China, Taiwan, Mexico, and throughout the USA and some primary and final manufacturing processes occur at factory in Monroe, NC USA. The components come from processes like stamped steel, turning, zinc and aluminum casting. Final assembly takes place in Monroe, NC USA.

The factory of Monroe, NC USA has a certification of Quality Management system in accordance with ISO 9001:2008.

Waste management at the Monroe, NC USA factory is in accordance with the plant's ISO9001 and ISO14001:2004 standards:

Office paper / cardboard recycling - covered under Solid Waste Recycling Program

- Plant paper / cardboard recycling covered under Solid Waste Recycling Program
- General trash covered under Solid Waste Recycling Program
- Comingled recyclables covered under Solid Waste Recycling Program
- Metals recycling metal chips and dust covered under Solid Waste Recycling Program
- Wood pallets covered under Solid Waste Recycling Program.

2.8 Environment and health during manufacturing

ASSA ABLOY and Norton Door Controls are committed to producing and distributing door opening solutions with minimal environmental impact, where health & safety is the primary focus for all employees and associates.

- Environmental operations, GHG, energy, water, waste, VOC, surface treatment and H&S are being routinely monitored. Inspections, audits, and reviews are conducted periodically to ensure that applicable standards are met and Environment Management program effectiveness is evaluated.
- Code of Conduct covers human rights, labor practices and decent work. Management of ASSA ABLOY and Norton Door Controls are aware of their environmental roles and responsibilities, providing appropriate training, supporting accountability and recognizing outstanding performance.
- The factory of Monroe, NC USA has certification of Environmental Management to ISO 14001:2004
- Any waste metals during machining are separated and recycled. The waste from the water-based painting process is delivered to waste treatment plant.

2.9 Product processing / Installation

Norton Door Controls 9500 series door closers are sold through a variety of distribution and wholesale sources and installed by trained installation

technicians, such as locksmiths, carpenters etc. adhering to local/national standards and requirements as well as unskilled laborers. In any case the installation must be done in line with instructions provided by the manufacturer.

Door and frame preparations are made in door manufacturer's production sites.

2.10 Packaging

Norton Door Controls 9500 series door closers are packed in cardboard packaging. Packaging includes paper installation instruction – all of which are fully recyclable.

Material	Value (%)
Cardboard/paper	100.0
Total	100.0

2.11 Condition of use

Annual inspection is recommended in order to guarantee correct functionality of the product and the door leaf. The inspection includes: checking, fixing screws to ensure they are properly tight, correct adjustments (closing speeds, force), compliance with local legal inspection standards and greasing all the moving parts of the arm.

2.12 Environment and health during use

There is no harmful emissive potential. No damage to health or impairment is expected under normal use corresponding to the intended use of the product.

2.13 Reference service life

Norton Door Controls 9500 series door closers were developed to comply with ANSI/BHMA A156.4 Grade 1 standard and quality requirements. The 9500 series closer has surpassed 25 million cycles in testing witnessed and verified by UL. This closer exceeds ANSI/BHMA A156.4 Grade 1 cycle requirements by

more than 16 times. The typical life time of a 9500 series is 25 years, dependent on frequency of cycles.

2.14 Extraordinary effects

Fire

Norton Door Controls 9500 series door closers are tested for usage in fire and smoke protection doors according to UL10C.

Water

Door closers include hydraulic oil and are designed for conventional use and are not intended for flood protection. Unforeseeable flooding conditions will increase the potential for developing surface rust.

Mechanical destruction

No danger to the environment can be anticipated during mechanical destruction.

2.15 Re-use stage

The product is possible to re-use during the reference service life and be moved from one door to another. The product is mainly constituted by steel, which can be recycled. The plastic components can be used for energy recovery within a waste incineration process.

2.16 Disposal

Materials or product parts that can be recycled (such as aluminum, steel and other metals) are assumed to be recycled. Plastics are assumed to be send to incineration (with energy recovery). Components or parts that cannot be clearly separated or recycled are assumed to be disposed in landfill.

2.17 Further information

Norton Door Controls 3000 Hwy 74 East Monroe, NC 28112 USA Tel: +800-438-1951 www.nortondoorcontrols.com

3. LCA: Calculation rules

3.1 Declared Unit

The declaration refers to the functional unit of 1 piece of door closer 9500 Series as specified in Part B requirements on the EPD PCR Locks and fittings.

Declared unit

Decial ed utilit		
Name	Value	Unit
Declared unit	1	piece of door closer
Mass (without packaging)	5,92	kg
Conversion factor to 1 kg	0.170	-

3.2 System boundary

Type of the EPD: cradle to gate - with options The following life cycle stages were considered:

Production stage:

- A1 Raw material extraction and processing
- A2 Transport to the manufacturer and
- A3 Manufacturing

A4-A5 Construction stage:

• A4 - Transport from the gate to the site

A5 – Packaging waste processing

End-of-life stage:

- C2 Transport to waste processing
- C3 Waste processing
- C4 Disposal (landfill)

This includes provision of all materials, products and energy, packaging processing and its transport, as well as waste processing up to the end-of waste state or disposal of final residues.

 D - Declaration of all benefits or recycling potential from EOL and A5.

3.3 Estimates and assumptions

In the End-of-Life stage a scenario with collection rate of 100% for all the recyclable materials was assumed.

3.4 Cut-off criteria

In the assessment, all available data from the production process are considered, i.e. all raw

materials used, auxiliary materials (e.g. lubricants), thermal energy consumption and electric power consumption - including material and energy flows contributing less than 1% of mass or energy (if available). In case a specific flow contributing less than 1% in mass or energy is not available, worst case assumption proxies are selected to represent the respective environmental impacts.

Impacts relating to the production of machines and facilities required during production are out of the scope of this assessment.

3.5 Background data

For life cycle modeling of the considered products, the GaBi 6 Software System for Life Cycle Engineering, developed by thinkstep AG, is used /GaBi 6 2013/. The GaBi-database contains consistent and documented datasets which are documented in the online

GaBi-documentation /GaBi 6 2013D/.

To ensure comparability of results in the LCA, the basic data of GaBi database were used for energy, transportation and auxiliary materials.

3.6 Data quality

The requirements for data quality and background data correspond to the specifications of the /IBU PCR PART A/

thinkstep AG performed a variety of tests and checks during the entire project to ensure high quality of the completed project. This obviously includes an extensive review of project-specific LCA models as well as the background data used.

The technological background of the collected data reflects the physical reality of the declared products.

The datasets are complete and conform to the system boundaries and the criteria for the exclusion of inputs and outputs.

All relevant background datasets are taken from the GaBi 6 software database. The last revision of the used background data has taken place not longer than 10 years ago.

3.7 Period under review

The period under review is 2013/14 (12 month average).

3.8 Allocation

Regarding incineration, the software model for the waste incineration plant (WIP) is adapted according to the material composition and heating value of the combusted material. In this EPD the following specific life cycle inventories for the WIP are considered:

- Waste incineration of plastic
- Waste incineration of paper

Regarding the recycling material of metals, the metal parts in the EoL are declared as end-of-waste status. Thus, these materials are considered in module D. Specific information on allocation within the background data is given in the GaBi dataset documentation.

3.9 Comparability

Basically, a comparison or an evaluation of EPD data is only possible if all the data sets to be compared were created according to /EN 15804/ and the building context, respectively the product-specific characteristics of performance, are taken into account.

4. LCA: Scenarios and additional technical information

The following technical information is a basis for the declared modules or can be used for developing specific scenarios in the context of a building assessment if modules are not declared (MND).

Installation into the building (A5)

motanation into the banding (7.0)		
Name	Value	Unit
Output substances following waste treatment on site (Paper packaging)	0.38	kg

Reference service life

Name	Value	Unit
Reference service life	25	а

End of life (C2-C4)

Name	Value	Unit
Collected separately, brass, steel, zinc, plastics	5.74	kg
Collected as mixed construction waste – construction waste for landfilling	0.18	kg
Reuse plastics parts	0.23	kg
Recycling brass, steel, zinc	5.51	kg
Landfilling of construction waste	0.18	kg

Reuse, recovery and/or recycling potentials (D), relevant scenario information

Name	Value	Unit
Collected separately waste type Door closer (including packaging)	6.30	kg
Recycling Brass	0.09	%
Recycling Steel	87.01	%
Recycling Zinc	0.40	%
Thermal Treatment (plastics)	3.61	%
Loss Construction waste for landfilling (no recycling potential)	2.87	%
Reuse Packaging (paper) (from A5)	6.02	%

5. LCA: Results

Results shown below were calculated using CML 2000 – Apr. 2013 Methodology.

D=06					01/0-			452//									
PROD				CONST ON PRO	RUCTI OCESS	ENI I	EM BOUNDARY (X = INCLUDED IN LCA; M USE STAGE						END OF LIFE STAGE				BENEFITS AND LOADS BEYOND THE SYSTEM BOUNDARYS
Raw material supply	Transport		Manufacturing	Transport from the gate to the site	Assembly	Use	Maintenance	Repair	Replacement ¹⁾	Refurbishment ¹⁾	Operational energy use	Operational water use	De-construction demolition	Transport	Waste processing	Disposal	Reuse- Recovery- Recycling- potential
A 1	A	2	А3	A4	A5	B1	B2	В3	В4	B5	В6	В7	C1	C2	C3	C4	D
Х	Х	(Х	Х	Х	MNE	MND	MND	MND	MND	MND	MND	MND	Х	Х	Х	Х
RESU	ILT	S	OF TH	IE LCA	/ - EN	VIRO	NMENT	AL IM	PACT	「: 1 pie	ce of	door d	loser I	Vortor	า 9500	1	
Parame	eter		P	Paramete	er		Unit	A1 -	A3	A4	A	\ 5	C2		СЗ	C4	D
GWF)		Global v	warming	potential	[k	g CO ₂ -Eq.]	2.31E	+01	1.80E-01	5.40	E-01	1.80E-01	0.0	0E+00	1.02E+	00 -4.67E+00
ODF	,			on potent heric ozc			g CFC11- Eq.]	3.44E-09		8.61E-13	2.47	E-12	8.61E-13	0.0	0E+00	3.06E-	12 -2.43E-10
AP				potentia water		I	3 SO ₂ -Eq.]	8.73E	-02	8.23E-04		1.23E-04		8.23E-04 0.00E+0		2.59E-0	04 -1.67E-02
EP		Futrophication potential [kg (PO		(g (PO ₄) ³ -	7.89E-03		1.88E-04 2.14E-05		E-05	1.88E-04 0.00E+0		0E+00	1.96E-0	05 -1.35E-03			
POC	Formation potential of tropospheric ozone photochemical oxidants			Eq.] kg Ethen Eq.]	6.91E		-2.65E-04		E-06	-2.65E-04		0E+00	1.26E-0				
ADPI	Abiotic depletion potential for nor fossil resources		non [k	g Sb Eq.]	1.01E-03		6.78E-09	9.87	E-09	6.78E-09	0.0	0E+00	6.72E-0	08 -9.81E-05			
ADP	F	Al	biotic de	epletion position pos	otential f	or	[MJ]	2.46E	+02	2.48E+00	1.52	E-01	2.48E+00	0.0	0E+00	4.30E-0	01 -4.80E+01
	DESULTS OF THE LCA DESCRIPCE USE: 1 piece of door closer Norton 0500																

RESULTS OF THE LCA - RESOURCE USE: 1 piece of door closer Norton 9500

Parameter	Parameter	Unit	A1 - A3	A4	A5	C2	C3	C4	D
PERE	Renewable primary energy as energy carrier	[MJ]	2.87E+01	-	-	-	-	-	-
PERM	Renewable primary energy resources as material utilization	[MJ]	0.00E+00	-	-	-	-	-	-
PERT	Total use of renewable primary energy resources	[MJ]	2.87E+01	9.77E-02	1.41E-02	9.77E-02	0.00E+00	3.15E-02	-8.60E-01
PENRE	Non renewable primary energy as energy carrier	[MJ]	2.83E+02	-	-	-	-	-	-
PENRM	Non renewable primary energy as material utilization	[MJ]	0.00E+00	-	-	-	-	-	-
PENRT	Total use of non renewable primary energy resources	[MJ]	2.83E+02	2.49E+00	1.78E-01	2.49E+00	0.00E+00	4.78E-01	-4.84E+01
SM	Use of secondary material	[kg]	5.04E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
RSF	Use of renewable secondary fuels	[MJ]	0.00E+00						
NRSF	Use of non renewable secondary fuels	[MJ]	0.00E+00						
FW	Use of net fresh water	[m³]	9.30E-02	6.90E-05	1.57E-03	6.90E-05	0.00E+00	2.49E-03	-6.09E-03

RESULTS OF THE LCA - OUTPUT FLOWS AND WASTE CATEGORIES: 1 piece of door closer Norton 9500

Parameter	Parameter	Unit	A1 - A3	A4	A5	C2	СЗ	C4	D
HWD	Hazardous waste disposed	[kg]	8.58E-03	5.67E-06	1.22E-05	5.67E-06	0.00E+00	3.34E-05	1.54E-03
NHWD	Non hazardous waste disposed	[kg]	3.72E-01	3.13E-04	1.37E-02	3.13E-04	0.00E+00	9.48E-02	-6.29E-02
RWD	Radioactive waste disposed	[kg]	1.48E-02	3.26E-06	1.04E-05	3.26E-06	0.00E+00	1.90E-05	-1.92E-04
CRU	Components for re-use	[kg]	0.00E+00						
MFR	Materials for recycling	[kg]	0.00E+00	0.00E+00	3.80E-01	0.00E+00	5.52E+00	0.00E+00	0.00E+00
MER	Materials for energy recovery	[kg]	0.00E+00						
EEE	Exported electrical energy	[MJ]	0.00E+00	0.00E+00	6.85E-01	0.00E+00	0.00E+00	1.95E+00	0.00E+00
EET	Exported thermal energy	[MJ]	0.00E+00	0.00E+00	1.93E+00	0.00E+00	0.00E+00	5.34E+00	0.00E+00

6. LCA: Interpretation

This chapter contains an interpretation of the Life Cycle Impact Assessment categories. Stated percentages in the whole interpretation are related to the overall life cycle, excluding credits (module D).

Production stage (module A1-A3) contributes between 92% and 100% of the total impact assessment. This stage is dominated by upstream emissions associated with steel manufacturing process. Steel accounts with almost 93% to the overall mass of the product, therefore, the impacts are in line with the mass composition of the product.

The environmental impacts for the transport (A2) have a negligible impact within this stage.

The negative contribution of transports to installation side (module A4) to POCP impact categories is explained in following. The most important substance contributing to the ozone forming process is nitrogen dioxide (NO2), which is cleaved under the influence of

sunlight. This produces nitric oxide (NO) and ozone (O3). Conversely, nitrogen monoxide and ozone form NO2 and O2. Ozone formation and ozone depletion are in equilibrium, the ozone concentration depend on the ratio of NO2 and NO emissions to air and the solar radiation.

Therefore NO has a negative and NO2 a positive characterization factor according to CML. NO is mainly emitted from internal combustion engines (ICE) while the fuel combustion. This leads to a negative overall value for the POCP for transports (using ICE) according to CML methodology.

In the end-of-life stage, there are loads and benefits (module D, negative values) considered. The benefits are considered beyond the system boundaries and are declared for the recycling potential of the metals and for the credits from the incineration process (energy substitution).

7. Requisite evidence

Not applicable in this EPD.

8. References

Institut Bauen und Umwelt

Institut Bauen und Umwelt e.V., Berlin (pub.): Generation of Environmental Product Declarations (EPDs);

General principles

for the EPD range of Institut Bauen und Umwelt e.V. (IBU), 2013-04 www.bau-umwelt.de

IBU PCR Part A

IBU PCR Part A: Institut Bauen und Umwelt e.V., Königswinter (pub.): Product Category Rules for Construction Products from the range of Environmental Product Declarations of Institut Bauen und Umwelt (IBU), Part A: Calculation Rules for the Life Cycle Assessment and Requirements on the Background Report. April 2013 www.bau-umwelt.de

IBU PCR Part B

IBU PCR Part B: PCR Guidance-Texts for Building-Related Products and Services. From the range of Environmental Product Declarations of Institute Construction and Environment e.V. (IBU). Part B: Requirements on the EPD for Locks and fittings. www.bau-umwelt.com

ADA Compliant

ADA Compliant: Americans with Disabilities Act 2010 Standard for Accessible Design

ANSI/BHMA A156.4

ANSI/BHMA A156.4-2013: Standard for Door Controls - Door Closers

ANSI A117.1

ANSI A117.1-2009 Accessible and Usable Buildings and Facilities

ISO 9001

ISO 9001:2008: Quality management systems - Requirements

ISO 14001

ISO 14001: Environmental management systems -Requirements with guidance for use (ISO 14001:2004 + Cor. 1:2009)

ISO 14025

ISO 14025:2011-10: Environmental labels and declarations — Type III environmental declarations — Principles and procedures

EN 15804

EN 15804:2012+A1:2014: Sustainability of construction works - Environmental product declarations - Core rules for the product category of construction products

GaBi 6 2013

GaBi 6 2013: Software-System and Database for Life Cycle Engineering. Copyright, TM. Stuttgart, Echterdingen, 1992-2013.

GaBi 6 2013D

GaBi 6 2013D: Documentation of GaBi 6: Software-System and Database for Life Cycle Engineering. Copyright, TM. Stuttgart, Echterdingen, 1992-2013. http://documentation.gabi-software.com/

UL Listed

Tested to / Compliant with UL228 Standard for Door Closers – Holders

UL228

UL228 Door Closers - Holders with or without Integral Smoke Detectors

UL10C

UL10C Positive Pressure Fire Test of Door Assembly

9. Annex

Results shown below were calculated using TRACI Methodology.

DESC	RIP	TION O	F THE	SYST	ГЕМ В	EM BOUNDARY (X = INCLUDED IN LCA; N										MND = MODULE NOT DECLARED)						
PROD	DUCT	CONSTR ON PROC		OCESS	CESS		USE STAGE							END OF LIFE STAGE				BEY S	BENEFITS AND LOADS BEYOND THE SYSTEM BOUNDARYS			
Raw material supply	Transport	Manufacturing	Transport from the gate to the site	Assembly	Use	Maintenance	Repair	Replacement ¹⁾	Refurbishment ¹⁾	Operational energy	egerande ereggy	Operational water	esn	De-construction demolition	Transport	Waste processing	Disposal		Recovery- Recycling- potential			
A1	A2	A3	A4	A5	B1	B2	В3	B4	B5	E	В6	В	7	C1	C2	С3	Ċ4	ı	D			
Х	Х	Х	Χ	Х	MND	MND	MND	MND	MND	М	IND	MN	1D I	MND	Х	Х	Х		Х			
RESU	RESULTS OF THE LCA - ENVIRONME						NTAL IMPACT		Γ: 1 pie	1 piece of		door clos		ser	Norto	n 9500	9500					
Parame	eter	Parameter					Ur	it	A1-3		A4		A5		C2	С3		C4	D			
GWP		Global warming potential					[kg CC	₂ -Eq.]	2.31E+0	01	1.80E-01		5.40E-01		1.80E-01	0.00E+	00 1	I.02E+00	-4.67E+00			
ODP Deple			etion potential of the stratospheric ozone layer				[kg CFC	11-Eq.]	3.66E-09		9.15E-13		2.62	E-12	9.15E-13	0.00E+	00 :	3.26E-12	-2.58E-10			
AP	AP Acidificat			tion potential of land and water			[kg SC	₂ -Eq.]	8.91E-02		1.08E-03		1.49	E-04	1.08E-03	3 0.00E+	.00 :	3.04E-04	-1.69E-02			
EP	EP E			Eutrophication potential				-eq.]	5.29E-0)3	7.60E	E-05	8.58E-06		7.60E-05	0.00E+	.00 9	9.26E-06	-9.80E-04			
Smo	Smog Ground			d-level smog formation potential			[kg O₃-eq.]		1.29E+0	00	2.21E	E-02	3.47	E-03	2.21E-02	-02 0.00E+0		2.39E-03	-2.42E-01			
Resour	ces	Res	Resources – fossil resources				[MJ]		1.58E+0)1	3.57E	E-01	1.78			0.00E+	0.00E+00 4.		-1.08E+00			
RESULTS OF THE LCA - RESOURCE						CE U	JSE: 1 piece of door closer						Norton 9500				L					
Parar	neter	Parameter					Unit	A1-	3	Α4	А		\5	C2		C3		C4	D			
PERE		Renewable primary energy as energy carrier					[MJ]	2.87E-	+01	_			-	-		-		-	-			
PERM		Renewable primary energy					[MJ]	0.00E-	+00	_	_		_	_		-		_	_			
PERT		resources as material utilization Total use of renewable primary					[MJ]			775	F 02 4 44		F 00			2 0.00E+00			0.005.04			
PENRE		energy resources Non renewable primary energy as					[MJ]	2.87E-		/ / E-(7E-02 1.		41E-02 9.7			0.00E+00 -	3.	15E-02	-8.60E-01			
		energy carrier Non renewable primary energy as						2.002		-		-			-			-	-			
PENRM		material utilization Total use of non renewable primary					[MJ]	0.00E	+00	-		-		-		-		-	-			
PENRT		TOtal u	energy resources				[MJ]	2.83E-	+02 2.4	19E+	9E+00 1		1.78E-01 2		9E+00	0.00E+00		78E-01	-4.84E+01			
S	SM L		se of secondary material				[kg]	g] 5.04E+0		0.00E+00		0.00E+00		0.00	0.00E+00 0.		0.0	00E+00	0.00E+00			
RS	RSF Use		f renewable secondary fuels			els	[MJ] _{0.00E+}		+00 0.0	00 0.00E+00		0.00E+00		0.00E+00		0.00E+00		00E+00	0.00E+00			
NRSF		Use o	Use of non renewable secondary fuels					[MJ] _{0.00E+}		00 0.00E+00		0.00E+00		0.00E+00 0		0.00E+00		00E+00	0.00E+00			
FW		l	Use of net fresh water				[m³]	9.30E	-02 6.9	6.90E-05		1.57E-03		6.90E-05 0		0.00E+00		49E-03	-6.09E-03			
RESULTS OF THE LCA - OUTPUT FLOWS AND WASTE CATEGORIES: 1 piece of door closer Norton 950														on 9500								
Parameter			Parameter					Unit	A1-3		A4		A5	5 C2		C3		C4	D			
HW	/D		Hazardous waste disposed					[kg]	8.58E-03	.58E-03 5		5.67E-06		-05	5.67E-06	0.00E+	00 3	3.34E-05	1.54E-03			
NHV	۷D	Non hazardous waste disposed						[kg]	3.72E-01	2E-01 3.13I		-04 1.37		-02 3.13E-04		0.00E+	00 9	9.48E-02	-6.29E-02			
RW	/D	Radioactive waste disposed						[kg]	1.48E-02	02 3.26E		-06 1.04		-05	-05 3.26E-06		00 1	1.90E-05	-1.92E-04			
CR	U	Components for re-use						[kg]		+00 0.00E		+00 0.00		E+00 0.00E+00		0.00E+00		0.00E+00	-			
MF	R	Materials for recycling					[kg]		0.00E+00	.00E+00 0.0		00E+00 3.		-01	0.00E+00	5.52E+	00 0	0.00E+00	-			
ME	R	Materials for energy recovery					[kg]		0.00E+00	.00E+00 0.0		00E+00 0.0		00E+00 0.00E		0.00E+00		0.00E+00	-			
EE	E	Exported electrical energy						[MJ]	0.00E+00	+00 0.00E		+00 6.85		E-01 0.00E+00		0.00E+	0.00E+00 1.9		-			
EET			Exported thermal energy			ly	[MJ]		0.00E+00	.00E+00 0		0.00E+00		+00	0.00E+00	0.00E+	00 5	5.34E+00	-			

Publisher

Institut Bauen und Umwelt e.V. Panoramastr. 1 10178 Berlin Germany

+49 (0)30 3087748-0 Tel Fax +49 (0)30 3087748-29 Mail info@bau-umwelt.com www.bau-umwelt.com Web

Programme holder

Institut Bauen und Umwelt e.V. Panoramastr 1 10178 Berlin Germany

Tel +49 (0)30 3087748-0 +49 (0)30 3087748-29 Fax Mail info@bau-umwelt.com www.bau-umwelt.com Web

Author of the Life Cycle Assessment

thinkstep AG Hauptstraße 111-113 70771 Leinfelden-Echterdingen Germany

Tel +49 (0)711 341817-0 Fax +49 (0)711 341817-25 Mail info@thinkstep.com www.thinkstep.com Web

Owner of the Declaration

Norton Door Controls 3000 Hwy 74 East Monroe, NC 28112 USA

Tel +1 800-438-1951 +1 800-338-0965 Fax Web

www.nortondoorcontrols.com